

 Copyright 2020, Attuned Labs LLC, All rights reserved

The Elastic, Content-Managed Warehouse System
Robots, goods-to-person, new previously unheard-of automation – that is the story of warehouse

systems in 2020. So, what are vendors and, correspondingly, customers to do?

On the one hand, the warehouse systems vendors want customers to stay current on their latest and

greatest so they can, understandably, minimize the variability in their support organizations and

optimize their SaaS revenue. We get it. It is very difficult to maintain knowledge and staffing to support

many past releases while meeting contractual service level agreements with customers. But, how on

earth do keep customers current while the warehouse landscape shifts under your feet. Some

customers, for example, want to work with Robot Vendor X, others with Goods-to-Person Vendor Y, and

still others want to work with Virtual-Reality Vendor Z. How do you make it all work – all under the

umbrella of one multi-tenant, multi-site Warehouse System?

We have a solution; one that we’ve been thinking about for the past 2-3 years: The Elastic, Content-

Managed Warehouse.

Warehouse Systems as a Content Management Problem
We’ve had a lot of time to think about this and our next software release. Interestingly, we are NOT

aiming to build a system to compete with the traditional WMS and WES vendors, but one to

complement them. But, to achieve this, we’d have to build the discipline into our architecture to 1)

know that we are co-existing with multiple WMS and WES systems, and 2) support a very flexible,

repeatable deployment model. So, our solution was to build a multi-tenant, multi-site content-managed

system.

It all sounds a bit like techno-mumbo-jumbo, but what it boils down to is a simple idea: separate the

capabilities for integrating human resources, WMS and WES functions, robots, AGVs, etc. from the

recipes needed to make them work. In doing so, we could create a flexible way for customers to use our

services, to extend WMS and WES functionality, while not interfering with any vendor’s core systems.

Obviously, in any warehouse system, there are a variety of artifacts like paperwork, label formats,

reports that may differ from site to site. These represent things you can traditionally think of as content

(in a true Content Management System). But beyond that, from a business and warehouse Ops

perspective, there is so much more. While low-level componentry (APIs) may be the same, every site

might want to use them slightly differently by combining them in different ways. In other words, they

may want to tailor the flows to meet the exact requirements of their operation vs living with, say, a 75%

fit. Subtle changes in screen flow, screen content, the sequencing of logic within business processes, can

yield a dramatic impact on operational performance.

Thus, we have spent a lot of time trying to build an architecture that attempts to put all the controls in

the hands of implementers, business analysts, and our operational savvy IT colleagues. Here are some

examples:

 Copyright 2020, Attuned Labs LLC, All rights reserved

User Interface (mobile App) Definition as Content
Everyone likes a good App. Now, with the new generation of Android devices making their way to the

warehouse floor, we can put great Apps onto this new hardware. But one of the big problems with this

is the fact that the Apps might require regular updates to get bug fixes or enhancements to the floor.

Managing Apps on 250 industrial mobile devices, which are used constantly 2-3 shifts per day, is a much

bigger problem than worrying about downloading the newest version of Uber Eats to your phone every

few months. It can be a difficult and time-consuming coordination problem. Our solution? Separate

the App on the mobile device from content yielded by the App. In other words, the forms and flow the

users see running within their App (the look of the forms and the flows) are content. In our case, we

define them in XML, store them as resources, and fetch them at run-time to render the App. It can then

be managed and distributed like content - and not EXE or APK files which require installation on every

device. Here is the breakdown of how we did this.

 Basic Screen Definition:
Basic screen configuration is stored in XML and rendered on-the-fly by the ElasticUI Form

Engine. Note the tags for I18N (Internationalization) configuration. At the time of writing

this document, the ElasticUI supports 13 of the most commonly used languages including

multi-byte languages like Hindi. An example of a screen definition is below.

Example of Adding some Advanced Features:
To demonstrate some of the more advanced features of the ElasticUI, we teamed the UI

framework with the smallest (easy to holster), least expensive, industrialized mobile device we

could find (Zebra TC-20 – about $500/USD) for this example.

 Copyright 2020, Attuned Labs LLC, All rights reserved

See the very short (one minute) video of our ElasticUI below, showing voice cues and a tightly-

coupled integration with a unique wearable product called the ProGlove Display.

The behavior of both the ProGlove Display and the voice cues were added to the cycle count

flow by a pair of simple tags in the form definition XML.

In the case of the ProGlove tags, they look like this* on the first from:

<property name="progloveAreaVerify" type="proglove" template="PG1"

enumTitles="Area Code" enum="SD99" i18nId="progloveAreaText" />

And this on the second form:

<property name="progloveLocationVerify" type="proglove"

template="PG2I" data="1||Location|2||B380050301" destroy="true"

i18nId="progloveLocationText" />

* For example only, in a projection application the DATA would be coming from the application

dynamically

 Similarly, the voice cues are configured in the XML and are Internationalized.

<property focus="true" name="locationConfirm" shortcutKey="F1"

type="string" audioLocale="en-US" title="(F1) Verify Count Location"

audioText="Enter or scan the location code shown on the sign at the

end of the aisle" matchValue="locationDisplay" required="true" />

The above example uses some of the new features released in the most current version of the

AttunedLabs Leap FORM UI (Euphonium Release).

API/Services Definition as Content
The major focus of any modern system is to direct applications to the correct back-end components

and/or services. In most systems, even with the newest technology stacks, these back-end services are

pretty much hard-wired. This is the scenario with most WMS and WES systems - they think they own all

the execution. Unfortunately, the notion of this level of control is an artifact of old-style thinking. As the

overwhelming trend in today’s warehouse systems shows a strong need for more collaboration between

http://www.attunedlabs.com/
https://www.youtube.com/embed/yPYCjdPFOeo?feature=oembed

 Copyright 2020, Attuned Labs LLC, All rights reserved

automation technology vendors, we found ourselves in a situation where we needed to create an

entirely new architectural approach.

The Always Integrating Warehouse Architecture
We looked at a lot of the work we’d done in the past 15-20 years – the common threads and difficulties,

We asked some hard questions about why we spend so much labor doing integrations. Imagine what

happens when you take WMS architects who wrote one of the original context processing engines

(MOCA) and have them add some younger blood to re-imagine a new framework for this century.

You find yourself with a philosophy that we call the Always Integrating Service. In other words, we built

integration into our services architecture as a core capability (and not a bolt-on or external software).

We began with the approach by embedding Apache Camel, the light-weight routing and mediation

engine, inside our architecture. In addition to wanting the ability to control flow as a content problem,

which Camel does nicely, we wanted to build services that were integration aware or Always

Integrating. Camel comes with hundreds of components and connectors, allowing the inclusion of even

the newest technologies (Kafka, crypto components, and dozens of Amazon AWS abilities). In the end,

this new architecture removes the requirement for external ESB systems like Mulesoft to perform

integrations (see the discussion of Big-Block integrations later in this paper).

Vendor Solutions as First-Class Services

One of the most important concepts of our approach to APIs is the acknowledgment that the landscape

inside the warehouse is ever-changing. New solutions, new vendors, and new ideas are now the norm

and not the exception. Thus, one of the major concepts within our framework is the idea of vendor-

based implementations. In other words, we assume we are in a multi-vendor site and any particular

service might be performed by one or more vendor solutions. Vendor solutions are not cobbled into

fragile external integrations. Instead, they become first-class, fully enabled service providers. This is

something we call Vendor-Selectable Services.

Vendor-Selectable Service Example for Parcel
Integration with Parcel Systems is one of the best examples of needing vendor-selectable services. A

customer may have a contract with UPS or FedEx, yet need to ship other parcels - maybe with a

specialty carrier for white-glove deliveries. Historically, this would mean involving a Parcel Middleware

System (PMS) at, not insignificant, extra expense. In our framework, it is possible to, within a single

service definition specify the scenarios to use any number of different carrier APIs within one service

definition. The application simply calls a single service. The system decides, dynamically, which vendor

service to use, it mediates the difference in methods and formats and performs the correct service

request. PMS vendors have great offerings, but using them to solve simple problems like the one cited

above creates a lot of extra expense and overhead. Vendor-selected services provide customers with

another choice.

Once again, Vendor-Selectable Services are all just content to us. Here is a snippet from a Good-To-

Person robot picking service definition. Our architectural standard within service flows includes a

“Vendor Selection” route. This route is responsible for looking at the necessary data to determine the

vendor to perform, in this case, a pick. In this example, we are deciding to send data to either Locus

Robotics or 6 River Systems robots.

https://camel.apache.org/

 Copyright 2020, Attuned Labs LLC, All rights reserved

<route id="roboticsservice-data-ImplementationSelectionRoute">

<from uri="direct:roboticsservice-data-ImplementationSelectionRoute" />

<toD uri="direct:$V{in.header.implroute}" />

</route>

Vendor Auditions
We discovered something interesting after we created this multi-vendor fabric inside our architecture.

It enables multi-vendor Auditions or Try-outs. Take the idea of Work-Force Management (sometimes

called Labor Management) software as an example. Our Always Integrating approach allows us to multi-

cast transactions to these systems simultaneously. This idea allows customers to get to a whole new

level of detail when considering new vendors by using very precise Apples-to-Apples comparisons. See

the discussion of Entities, below, and how, using our new Entities framework, we quickly created

mirrored integrations for Locus Robotics and 6 River Systems.

Entity Definitions as Content
Data acquisition, and some of the associated data actions, is core to any system. Many systems permit

minor flow changes with table settings, configurations, and exit points. However, changing settings,

policies, and configuration only gets you so far. Sometimes, you might just need to get access to some

additional bit of data to avoid a lot of extra keystrokes on the floor. So, being able to create abstract

entities, even entities exposed from other systems, and augment or reshape them can produce more

desirable results in a system.

A new feature to the Leap Framework, called Leap Entities, provides a whole new set of capabilities in

this regard. Leap Entities permit you to define an abstract, vendor aware, entity (data item or action)

which has some defined attributes:

• Taxonomy. This is the lingua franca the system with which you are communicating – a way to

describe data (what data is called and how to reference it). It supports the definition of a base

Taxonomy, say BY2019, and any number of foreign (vendor or system) taxonomies. BY2019 calls

the pick identifier a wrkref while another system might call it PickID. Our XML-based taxonomy

definitions provide a means of understanding the basic ways disparate systems reference similar

data.

• Projection. Where the taxonomy tells us how to describe data, the projection tells us how to

form the data – the format of data payloads. The days of flat structures ended with the

introduction of XML and have been further deprecated by the popularity of formats like JSON.

Both payload formats permit convenient and ubiquitous ways of defining and communicating

complex objects. The XML-Based projection definition provides a roadmap for the Leap

Architecture to create complex object payloads on the fly.

• Transformation. From an integration perspective, a big part of mediating the interchange of

data between systems is handling the “getting from here-to-there” problem. In other words,

how do you take on the actual transformation? With the taxonomy and the format of the

payload defined (the projection) – the last step is the actual transformation. In most systems,

these 3 elements (especially transformation) are external to the architecture. They would

require an external system like Mulesoft or WebMethods to take care of this step. This is NOT

the case in the Leap, Always Integrating, architecture. In this architecture, the transformation

 Copyright 2020, Attuned Labs LLC, All rights reserved

step is just another configuration, performed in-line during service execution. It permits the

definition of custom transformation adaptors or the use of XSLT. Thus, the necessity of an

external integration tool or framework is largely eliminated.

Below is an example of the Entity configuration for a data service for interfacing with robots. The base

taxonomy is BY2019 WMS, and the destinations are Locus Robotics and 6 River Systems. Note the

highlighted differences in the configuration: TransformationConfiguration, ProjectionFileName (both

extracted from a Swagger file), and a TaxonomyFileName.

Locus Robotics Entity Configuration:

<EntityRestRequestBody source="LDC">

<TransformationConfig required="true" fileName="Locus.xsl">

</TransformationConfig>

 <LDCRequestConfigs>

 <ApplyLDCConfig>

<LDCSchema required="false"

schemaFileName="schemaFileName" /><LDCProjection required="true"

projectionFileName="robotics_Locus_Swagger.json"

projectionSource="swagger" />

 <LDCTaxonomy required="true" taxonomyFileName="Locus" />

 </ApplyLDCConfig>

 </LDCRequestConfigs>

 </EntityRestRequestBody>

</EntityRestRequest>

6 River Systems Robotics Entity Configuration:

<EntityRestRequestBody source="LDC">

<TransformationConfig required="true" fileName="6RS_Pick.xsl">

</TransformationConfig>

 <LDCRequestConfigs>

 <ApplyLDCConfig>

<LDCSchema required="false"

schemaFileName="schemaFileName" /><LDCProjection required="true"

projectionFileName="robotics _riverSystems_Swagger.json"

projectionSource="swagger" />

 <LDCTaxonomy required="true" taxonomyFileName="6RiverSystems" />

 </ApplyLDCConfig>

 </LDCRequestConfigs>

 </EntityRestRequestBody>

 Copyright 2020, Attuned Labs LLC, All rights reserved

</EntityRestRequest>

See a short view of doing a codelsss integration to these two vendors in the video below.

Super Entities
As we were developing our entity framework, we found that not all vendors had their APIs completely

fleshed out, had implemented important variations with custom filters or ODATA queries, or were just

missing important elements. To handle this, we create the idea of a Super Entity. This is a concept like

the component wrapper ability in MOCA or the Superclass in object-oriented programming. We can

abstractly redefine the Entity via configuration. This permits us to retrieve data from multiple services,

or even multiple disparate systems and return the data in a single entity request. Once again, this uses

the core capabilities of the Leap architecture to define, in XML content, a set of flows that are bound

under one Super entity.

What of Big-Block Integration?
When you have an Always Integrating framework such as ours, much of what people normally call

integration work is baked into services. Virtually, all peer-to-peer small-block integrations are covered by

our Always Integrating Services framework.

Still, there are occasions when you still might need a big-block oriented integration (think order

downloads or receipts downloads). For these use-cases, we use Apache Nifi. Nifi is an open-source,

graphical integration configuration and monitoring tool. Configure it to read from files, to execute

services, perform transformations. It provides the ability to monitor the flows at runtime to view errors

and backpressure. These integrations are stored in XML and treated, again, like a Kind of content.

https://nifi.apache.org/
https://www.youtube.com/embed/TwqfpN4BBp8?feature=oembed

